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Abstract. How fast does the quark condensate in QCD-like theories vary as a function of Nf is inferred from
real QCD using chiral perturbation theory at order one loop. A sum rule is derived for the single relevant
chiral coupling constant, L6. A model independent lower bound is obtained. The spectral function satisfies
a Weinberg-type superconvergence relation. It is discussed how this, together with chiral constraints, allows
a solid evaluation of L6, based on experimental ππ–KK̄ S-wave T -matrix input. The resulting value of L6

is compatible with a strong Nf dependence possibly suggestive of the proximity of a chiral phase transition.

1 Introduction

By analogy with recent results obtained in supersymmet-
ric theories [1], one expects that QCD-like theories will un-
dergo a number of phase transitions at zero temperature
upon varying Nf , the number of different flavour fermions,
at fixed number of colours (Nc = 3 in the following). If the
number of fermions is large, Nf > (11/2)Nc, the theory
has no asymptotic freedom and no confinement. Decreas-
ing Nf below (11/2)Nc one encounters a conformal phase
as indicated by the fact that the β-function at two loops
has a zero [2]. Assuming the fermions to be all massless,
the chiral SU(Nf )×SU(Nf ) symmetry of the QCD action
remains unbroken in this phase. If one further decreases
Nf to small values, Nf = 2–3, then QCD is in a confining
phase in which the chiral group is spontaneously broken to
SU(Nf ). It is generally believed that, in this phase, the
quark condensate is non-vanishing and large.1 At larger
Nf , there could exist different phases of chiral symmetry
breaking. A physical picture of such phases is proposed
in [4]. An interesting open question concerns the value of
N crit

f for which a chiral phase transition takes place. Re-
cent lattice results suggest that a transition could occur
for Nf as small as four [5]. In an instanton vacuum model,
the quark condensate ceases to be non-vanishing for Nf

of the order of five [6], while another theoretical model
obtains a much larger value [7].

In this paper, we use the fact that nature solves or-
dinary QCD in order to extract information on how the
quark condensate varies with Nf for small values of Nf .
More specifically, if it can be shown that the ratio

R32 =
〈ūu〉Nf =3

〈ūu〉Nf =2
(1)

1 Experimental verification of this conjecture necessitates
specific and very precise data. This question is discussed in
[3].

is significantly smaller than one, one may expect a rather
small value of N crit

f . In the functional integral, the depen-
dence upon Nf arises from the fermion determinant part
of the measure: setting all quark masses equal, one has

dµ ≡ dµ(A) (det(i D/ +m))Nf . (2)

In other words, it is a Dirac sea effect. In the quenched
approximation, which is often used in lattice simulations,
the fermion determinant is set equal to one and R32 is ex-
actly one. The same result also follows in the leading large
Nc expansion of QCD, since the determinant contributes
to graphs with internal quark loops, which are subleading.
Using chiral perturbation theory (CHPT), one can access
the ratio

R̃32 =
〈ūu〉(mu=md=ms=0)

〈ūu〉(mu=md=0,ms 6=0)
. (3)

This ratio is different from R32, but it is also a measure
of the influence of the fermion determinant in the eval-
uation of the quark condensate. Again, this ratio would
be exactly one in the leading large Nc expansion or in
the quenched approximation, for any value of the strange
quark mass ms. The point here is that the physical value
of strange quark mass is sufficiently small compared to
the scale of the chiral expansion Λ ∼ 1 GeV, such that the
chiral expansion in ms/Λ makes sense and, at the same
time, ms is not so small that R̃32 will not trivially be close
to 1. In this paper, we will provide an estimate of R̃32.

The plan of the paper is as follows. In Sect. 2, the ex-
pression of R̃32 in CHPT at order one loop is given. This
expression involves a single low energy coupling constant,
L6(µ), in the nomenclature of Gasser and Leutwyler [9]. In
that paper, L6 was simply assumed to be OZI suppressed.
Here, we attempt a more careful estimate on the basis of
a chiral sum rule. Analogous chiral sum rules were dis-
cussed in the recent literature [10] and eventually provide
very good precision [11]. In Sect. 3, a sum rule expression
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for L6 in terms of the correlation function Π6(s) of two
scalar currents ūu+ d̄d and s̄s is established and ImΠ6(s)
is shown to satisfy a Weinberg-type sum rule. This will be
an important constraint to our evaluation. The construc-
tion of the spectral function is discussed in Sect. 4. Im-
portant ingredients are the pion and the kaon scalar form
factors which can be related to experimental information
on pion–pion scattering using analyticity, unitarity, high
energy constraints as well as low energy constraints from
chiral symmetry. This was first performed in [12]. The ex-
tension to the region of 1.5 GeV, where an important res-
onance contribution is expected is then discussed. Finally,
the result can be found in Sect. 6.

2 Ratio of quark condensates from CHPT

Consider QCD in the limit where the Nf quarks are ex-
actly massless. We will consider the cases of Nf = 2 and
Nf = 3 and assume, a priori, that chiral symmetry is
spontaneously broken in QCD in both cases and that the
value of the condensate is sufficiently large also in both
cases such that the conventional chiral expansion [13,9]
applies. In nature, none of the quark masses mu, md ms

is exactly vanishing, but they are in an asymmetric con-
figuration where mu, md << ms (by a factor of twenty
or so) and ms is itself sufficiently small compared to the
scale of the chiral expansion Λ. Using this fact, one can
express the ratio R̃32 as an expansion in powers of ms. At
chiral order O(p4), making use of the formulae of [9], one
obtains

R̃32 = 1 − msB0

Fπ
2

[
32L6(µ)

− 1
16π2

(
11
9

ln
msB0

µ2 +
2
9

ln
4
3

) ]
+ O(m2

s). (4)

At order O(p2) one has

msB0 =
1
2

(
M2

K+ + M2
K0 − M2

π+

)
, (5)

and this value can be used consistently in the equation
above. The size of R̃32 depends on the value of a single
low energy coupling constant, L6.

The low energy coupling constants of CHPT may be
related to QCD correlation functions evaluated near zero
momenta. This can be exploited, in particular for two-
point functions, in order to express these constants in the
form of sum rules using analyticity (and the fact that
chiral correlators have a non-singular short distance be-
haviour). A number of these are exhibited in [13]. A clas-
sic example concerns the coupling constant L10 which is
related to the correlation function of two vector currents
minus two axial currents. A very reasonable estimate for
L10 can be obtained simply using the idea of vector meson
dominance as well as Weinberg sum rules [14]. Our aim is
to estimate L6 along similar guidelines.

One specific reason for interest in L6 is in connection
with the Kaplan–Manohar transformation [15]. These au-
thors observed that the effective lagrangian is left invari-
ant under the following transformation of the quark mass
matrix:

M → M + α
(
32B0F

2
π

)
(M†)−1 det M, (6)

together with a transformation of certain low energy con-
stants. At chiral order O(p4) three coupling constants are
affected, L6, L7 and L8, which get transformed as

L6 → L6 − α, L7 → L7 − α, L8 → L8 + 2α. (7)

One consequence is that using low energy data alone, one
can only determine combinations which are invariant un-
der this transformation and not the individual values of
L6, L7 and L8. These values are of some importance. In
particular, the value of L8 determines the ratio of quark
masses 2ms/(mu+md) beyond the leading chiral order [9].
It is therefore of interest to explore means of separately
determining these constants (or at least one of them).

3 Sum rule for L6

Consider the correlation function of the two scalar, iso-
scalar currents ūu + d̄d and s̄s,

Π6(p2) =
i

B2
0

∫
d4xeipx

〈
T

[
(ūu(x) + d̄d(x))s̄s(0)

]〉
c ,

(8)
where the subscript “c” means that only connected graphs
are to be retained. The factor B−2

0 is introduced to sim-
plify forthcoming expressions and it furthermore makes
Π6 a renormalisation scale invariant object, B0 being de-
fined as

B0 = − lim
mu=md=ms=0

〈ūu〉
F 2

π

. (9)

For small momenta we can express Π6(p2) using CHPT.
In particular, at zero momentum, from CHPT at O(p4)
one obtains

Π6(0) = 64L6(µ) − 1
16π2

[
2 ln

(ms + m)B0

µ2

+
4
9

ln
(4ms + 2m)B0

3µ2 +
22
9

]
+ O(m, ms). (10)

Here, and in the following, isospin breaking is neglected
and we set mu = md = m. This expression is at the basis
of our sum rule estimate for L6. The quark condensate
ratio R̃32 has a very simple expression in terms of Π6.
Combining (4) and (10) one obtains

R̃32 = 1 − M̄2
K

32π2F̄ 2
π

[
16π2Π̄6(0) +

22
9

]
+ O(m2

s), (11)
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where barred quantities are to be taken in the limit mu =
md = 0. This relation (and (4)) can be recovered alterna-
tively by noting that

∂

∂ms
〈ūu + d̄d〉 = −B2

0Π6(0), (12)

and integrating this equation from ms = 0 to its physical
value using the CHPT expression (10).

It is possible to derive a lower bound on L6 and on
Π̄6(0) based on general properties of the QCD measure.
At first, it is not very difficult to show that Π6(0) must
be positive in the case of equal quark masses [16]. Let Z
be the partition function of euclidian QCD,

Z =
∫

dµ(A)e−SY M (A)det(i D/A +M),

M = diag(m, m, ms). (13)

We can express Π6(0) in terms of Z as

Π6(0) =
1
Z

d2Z

dmdms
− 1

Z

dZ

dm

1
Z

dZ

dms
. (14)

In the limit ms = m this can be written as an average of
a manifestly positive quantity,

lim
ms=m

Π6(0) =

〈(
Tr

1
i D/ +m

−
〈

Tr
1

i D/ +m

〉)2
〉

, (15)

where averages are defined as

〈O〉 =
1
Z

∫
dµ(A)e−SY M (A)det(i D/A +M)O(A). (16)

This is because Tr(i D/ +m)−1 can be shown to be real
and the averaging is performed with respect to an inte-
gration measure which is real and positive in euclidian
QCD (assuming the vacuum angle θ = 0 and a proper
regularisation of the fermion determinant). We can now
apply this result on the positivity of Π6(0) in conjunction
with its one-loop expression, (10), setting all three quark
masses there equal to the physical ms value. One gets

L6(µ) ≥ 11
4608π2

[
log

2msB0

µ2 + 1
]

+ O(ms). (17)

Ignoring higher loop corrections, this gives

103L6(Mη) ≥ 0.35, 16π2Π̄6(0) ≥ 1.57. (18)

This shows, in particular, that the condensate must be a
decreasing function of Nf .

Another property, which will prove an important con-
straint for the sum rule estimate of L6 is that Π̄6 satisfies
a Weinberg-type sum rule (WSR)∫ ∞

0
ImΠ̄6(s)ds = 0. (19)

The proof is analogous to that of the ordinary Weinberg
sum rules (see e.g. [17] ). The operators in the operator-
product expansion at short distances must transform in

the same way as (ūu + d̄d)s̄s under the chiral group. The
masses mu and md being set equal to zero, the operator
of lowest dimensionality having the correct transformation
property is ms(ūu + d̄d) and it has dimension four. Fur-
thermore, a factor of (αs)2 is generated from the fact that
all connected graphs contain at least two gluon lines. Tak-
ing into account the scale dependence of αs and that of
B0 in the perturbative region, we learn that Π̄6 vanishes
asymptotically faster than 1/q2,

Π̄6(q2) =
C〈ms(ūu + d̄d)〉

q2 [ln(−q2)]2+24/27 + O

(
1
q4

)
, (20)

with C a constant, which implies the WSR (19). Further-
more, this behaviour ensures convergence of an unsub-
tracted dispersion relation for Π̄6, so that one can express
its value at zero as

Π̄6(0) =
1
π

∫ ∞

0
ds

ImΠ̄6(s)
s

. (21)

While the WSR must be satisfied for arbitrary values of
ms, it is clear from (20) that convergence of the integral
(19) will be faster if ms = 0. In that situation, one ex-
pects the sum rule to be saturated in an energy interval
of, say, 0–2 GeV, by analogy with the ordinary Weinberg
sum rules. Experimental data are known for ms 6= 0, but
while there may be large differences locally in ImΠ6(s)
upon varying the value of ms (notably because of thresh-
old effects), it is expected that these differences will be
smoothed out to a large extent in the integral. One there-
fore expects that the WSR will also be approximately sat-
urated in a finite energy region, for the physical value of
ms.

Let us make some qualitative remarks on the practi-
cal significance of the sum rule. In the large Nc counting,
Π6 is suppressed compared to a generic QCD correlation
function: it is of order O((Nc)0) instead of O(Nc). As a
byproduct, one observes that the contribution of a single
resonance is not enhanced by a factor of Nc compared
to the non-resonant background. In the large Nc world,
the coupling of a resonance to either ūu + d̄d or s̄s will
be suppressed. For a glueball, both couplings will be sup-
pressed. The real world, in the scalar sector, seems to be
quite different from these large Nc considerations. For in-
stance the f0(980) meson is found experimentally to be
rather light, narrow, and it couples strongly to both KK̄
and ππ channels in violation of the large Nc expectation.
As a consequence, one expects a strong contribution of
the f0(980) resonance to ImΠ6. In order to satisfy the
WSR (19) the contribution from the f0(980) has to be can-
celed by a higher energy contribution. It seems plausible
that this will be resonance dominated as well. The particle
data book [18] quotes several resonances in the 1.5 GeV re-
gion: the f0(1370), a rather wide resonance, the f0(1500),
which is well defined and rather narrow and (possibly) the
f0(1700). A first guess is that the sum rule (19) should be
essentially satisfied from an interplay between the f0(980)
and the f0(1500).

The remaining problem is to estimate the couplings
of these resonances to the scalar currents. This cannot
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be extracted directly from experiment because of the ab-
sence of a physical scalar isoscalar source (which is the
same reason why L6, L7, L8 cannot be individually de-
termined from low energy experiments [19]). One way of
getting around this difficulty, which was used in QCD sum
rule estimates of the light quark masses [20] is to impose
smooth matching of the resonance contribution with the
low energy domain, which is known from CHPT at leading
order. This procedure can be checked to be a reasonable
one in the case of vector currents. The implementation of
this idea in the present context is discussed below.

4 Construction of the spectral function

4.1 The role of two-body channels

In the construction of ImΠ6(s) it is convenient to consider
separately the two energy regions (I) 0 < s <∼ 1 GeV2 and
(II) s >∼ 1 GeV2. Let us consider region I first. The only
intermediate states allowed to contribute to ImΠ6(s) are
2π, 4π and KK̄. When s << 1 GeV2, the 4π contribution
is suppressed by the chiral counting (being of order O(p8)
while the leading contribution is O(p4)). Close to 1 GeV2,
chiral counting is no longer effective, but it is found exper-
imentally that the f0(980) has very little coupling to 4π
(in fact, no decay of the f0(980) into four pions has been
observed yet [18]). It is extremely likely, then, that the 4π
contribution to ImΠ6(s) is negligible in this whole energy
range. As a result, the spectral function can be expressed
in terms of the pion and of the kaon scalar form factors.
It is convenient to introduce the following normalisations:

F1(s) =
1

B0

√
3
2
〈0|ūu + d̄d|π0π0〉,

G1(s) =
1

B0

√
3
2
〈0|s̄s|π0π0〉,

F2(s) =
1

B0

√
2〈0|ūu + d̄d|K+K−〉,

G2(s) =
1

B0

√
2〈0|s̄s|K+K−〉. (22)

The values of these form factors at s = 0 are proportional
to the derivatives of M2

π and M2
K with respect to the quark

masses. At leading chiral order, one has

F1(0) =
√

6 G1(0) = 0,

F2(0) =
√

2 G2(0) =
√

2. (23)

One-loop corrections to these values can consistently be
ignored because they are of the same order as the O(p6)
contributions in (10). In energy range I, the spectral func-
tion has the following expression:

ImΠ6(s) =
1

16π

2∑
i=1

√
s − 4M2

i

s
Fi(s)G∗

i (s)θ(s − 4M2
i )

(24)

(where M1 ≡ Mπ, M2 ≡ MK).
We consider now energy region II. More approxima-

tions will have to be made in this region. We will work out
the spectral function from several models in order to illus-
trate how the WSR can be satisfied. For the final purpose
of evaluating the dispersive integral (21) we will mainly
rely on information from energy range I. As s increases
a new two-body channel opens, ηη. At some point, the
4π channel will become important. Studies of ππ scatter-
ing suggest that this should happen at s1/2 >∼ 1.4 GeV.
This can be seen from the ππ inelasticity: below 1.4 GeV,
inelasticity is found to be saturated to a good approxima-
tion by a single inelastic channel, KK̄ (see e.g. Fig. 7 of
[21]) and then one observes a strong onset of ππ → 4π.
It is very likely that this is caused by the presence of
the nearby scalar resonances f0(1370) and f0(1500) which
were both observed to couple to four pion states [22–24].
Another experimental finding of these references is that
the 4π system, in this energy region, tends to cluster into
two resonances. This suggests that in an energy range suf-
ficiently large to saturate the chiral sum rule, the contri-
butions to the spectral function are either two-body chan-
nels or behave to a good approximation as quasi two-body
channels. We will utilise below a model [39] in which the
4π system is treated as an effective σσ two-body channel.
Correspondingly, we will introduce the scalar form factors,

F3(s) =
1

B0
〈0|ūu + d̄d|σσ〉,

G3(s) =
1

B0
〈0|s̄s|σσ〉. (25)

This is certainly somewhat schematic as it is known that
4π also clusters as an effective ρρ channel. In this model,
furthermore, the ηη channel is ignored. This is a ques-
tionable approximation, perhaps, although there is exper-
imental evidence that the coupling of ηη to ππ appears to
be relatively suppressed [25,26]. In the quasi two-body ap-
proximation of multimeson channels one can express the
spectral function in terms of form factors F1(s), . . . , Fn(s)
and G1(s), . . . , Gn(s) in the same way as (24) except that
the sum extends from 1 to n. Upon introducing effective
two-body channels, one faces the difficulty that one can
no longer rely on CHPT in order to determine the values
of the form factors at the origin. These values are needed
in the construction to be described below. In practice, we
will make the simple ansatz that these values are vanish-
ing,

Fi(0) = 0, Gi(0) = 0, i ≥ 3. (26)

Evaluation of the scalar form factors of the pion and the
kaon was discussed in [12], based on a set of Muskhe-
lishvili–Omnès equations. We review this evaluation and
its extension below.

4.2 Muskhelishvili-Omnès representation
of scalar form factors

The form factors Fi(s) which occur in the expression for
the spectral function (24) (generalised to n channels) are
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themselves analytic functions everywhere in the complex
plane except for a right-hand cut. Let Tij be the T -matrix
elements which describe scattering among the various
channels. A standard normalisation is adopted where the
S- and T -matrices are related as

Sij = δij + 2iσis
1
2 Tijσjs

1
2 θ(s − 4M2

i )θ(s − 4M2
j ),

with σi(s) =

√
s − 4M2

i

s
. (27)

The discontinuity of the form factors along the cut, gen-
erated from the two-body channels considered above, has
the following form:

ImFi(s) =
n∑

j=1

T ∗
ij(s)σj(s)Fj(s)θ(s − 4M2

j ). (28)

We expect the form factors to vanish asymptotically as
[27]

Fi(s) ∼ 1/s, s → ∞, (29)

and therefore to satisfy an unsubtracted dispersion rela-
tion. Clearly, the approximation of quasi-two-body chan-
nels cannot hold for arbitrarily large energies and (28) is a
reasonable approximation to the exact discontinuity only
in a finite energy range. However, as we are interested in
constructing Fi(s) in a finite energy region also, say be-
low 2 GeV, the detailed behaviour of the spectral function
at much higher energies is unimportant and we may as
well assume that (28) holds up to infinite energies, only
requiring that the T -matrix behaves in a way that ensures
the correct asymptotic decrease of the form factors. Un-
der these assumptions the form factors must satisfy a set
of coupled Muskhelishvili-Omnès [28,29] (MO for short)
singular integral equations,

Fi(s) =
1
π

n∑
j=1

∫ ∞

4M2
j

ds′ 1
s′ − s

T ∗
ij(s

′)σj(s′)Fj(s′). (30)

One observes that off-diagonal T -matrix elements are
needed outside of the physical scattering region. Except in
the one-channel case, this means that one not only needs
physical scattering data but also a parametrisation model
which allows for extrapolation.

4.3 Asymptotic conditions on the T -matrix

Let us now specify which asymptotic conditions are re-
quired from the T -matrix. Consider first the single chan-
nel case for which an analytic solution to the MO equation
is available [28,29],

F (s) = P (s)Ω(s),

Ω(s) = exp

[
s

π

∫ ∞

4M2
π

ds′ 1
(s′ − s)s′ δ(s

′)

]
, (31)

where δ(s) is the scattering phase shift and P (s) an ar-
bitrary polynomial. Integrating by parts, it is simple to

verify that as s → ∞ one has

Ω(s) → s−l, l =
1
π

(δ(∞) − δ(4M2
π)). (32)

Compatibility with the assumed high energy behaviour of
the form factor is ensured provided l ≥ 1. It is not diffi-
cult to see how this condition extends to the situation of n
coupled channels [28], even though no analytical solution
is known in general. Let us form a vector F of compo-
nents (F1(s), . . . , Fn(s)); we learn from Muskhelishvili’s
book that there will be in general n independent solution
vectors Fa, a = 1, . . . n, to the set of equations. Let us
form an n × n matrix from these

F
=
(s) ≡ (F1(s), . . . ,Fn(s)) . (33)

All matrix elements of F
=
(s) are analytic functions of s in

the cut complex plane and the discontinuity across the cut
can be formulated in matrix form,

F
=
(s + iε) = (1 + 2iTΣ)F

=
(s − iε),

Σij = δijσi(s)θ(s − 4M2
i ). (34)

Taking the determinant of both sides, we obtain a one-
dimensional discontinuity equation,

f(s + iε) = D(s)f(s − iε), f = det F
=
. (35)

As f(s) is also an analytic function, this equation can be
recast as a one-channel MO equation. As a consequence,
the determinant of the solution matrix F

=
can always be

expressed in analytical form even though the individual
entries are not known analytically. This is an interesting
property which we have used as a check of the accuracy
of our numerical calculations. It is easy to verify that, for
a given value of the energy s with m ≤ n channels being
open, D(s) is the determinant of the m × m S-matrix so
that it is a complex number of unit modulus,

D(s) ≡ exp(2i∆(s)). (36)

Letting s go to infinity, det F
=

behaves as an inverse power
of s, so that the matrix F

=
must be of the following form:

lim
s→∞ F

=
(s) =

1
sν

C
=
, (37)

with C
=

a constant n × n matrix with non-vanishing deter-
minant. Taking the determinant of this equation and us-
ing the one-channel result one finds that 1/s asymptotic
behaviour is ensured by the asymptotic condition,

∆(∞) − ∆(4M2
π) ≥ nπ. (38)

For instance, in the case of three channels, the T -matrix
must be such that the sum of the three eigen-phase shifts
sum up to 3π (or more) when the energy goes to infinity. If
the sum is exactly 3π, then the form factors are uniquely
determined at any energy from their values at zero.
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4.4 Models of ππ scattering T -matrix

In principle, ππ phase shifts and inelasticities can be de-
termined from di-pion production experiments, in which
high energy pions are scattered on proton targets (e.g.
[30]). A major source of information in this area so far, is
from the high statistics experiment by the CERN–Munich
collaboration [31] from which ππ S-matrix elements were
extracted by a number of people [30]. Various determi-
nations of S-wave phase shifts are generally in reasonable
mutual agreement below 1.4 GeV while marked differences
are seen above. From these early analyses there did not
emerge clear evidence for resonances at 1.4 or 1.5 GeV.
The CERN–Munich data themselves, however, are not in-
compatible with the presence of scalar resonances at these
energies. This was demonstrated recently by Bugg et al.
[32] who obtained a good fit to the CERN–Munich data
while constraining the S-matrix to have resonance poles
and residues conforming to the PDG results. Unfortu-
nately, it is not possible to use their parametrisation of
the S-matrix for solving the MO equations because, on
the one hand, it is not designed to satisfy the full set
of two-body unitarity constraints and, moreover, the cor-
responding T -matrix parametrisation does not allow for
extrapolation away from the physical scattering region. A
set of ππ S-wave scattering phase shifts and inelasticities
was obtained recently [33], based on high statistics di-pion
production data employing polarised proton targets [34].
In principle, polarisation information is extremely useful
in reducing the problems of phase ambiguities. Two solu-
tions consistent with unitarity were found, called up-flat
and down-flat. We will consider only the latter one here,
because on the one hand, it is in good agreement with ear-
lier phase shift determinations below 1.4 GeV and on the
other hand, up-type solutions can usually be eliminated
upon using the Roy equations [35,30] which encode cross-
ing symmetry and high energy constraints. This determi-
nation shows a marked resonance effect in the 1.4–1.5 GeV
region and thus appears as a good candidate for use in our
sum rule analysis. One notes that, above 1.4 GeV, the ππ
phase shifts determined by [33] and those determined in
[32] are not in good agreement.

For the purpose of solving the MO equation system one
further needs a T -matrix parametrisation allowing conve-
nient (and reliable) extrapolation below physical thresh-
olds. As pointed out in [12] a useful check on the extrap-
olation of T12 is to compare it to the chiral expansion in
the region where the latter is valid. Close to s = 0 one has

T12 =
√

3
64πF 2

π

s + O(p4). (39)

One-loop corrections to this result have been worked out
[36,37]. A simple T -matrix model, which is very useful for
performing checks of numerical calculations is that pro-
posed by Truong and Willey [38]. This model has the
property that the OM set of equations can be solved an-
alytically.

A somewhat more sophisticated T -matrix model, fit-
ted to reproduce the ππ data of [33] was proposed in [39].

Fits with both 2-coupled and 3-coupled channels were per-
formed. In this model, unitarity is ensured by solving a
Lippman–Schwinger equation with a potential matrix cho-
sen to have the following separable form:

Vij(p, q) =
∑
l,m

1
p2 + µ2

il

1
q2 + µ2

jm

λlm. (40)

The T -matrix can be computed analytically and it can be
checked to have the correct chiral magnitude at low en-
ergy (in other words it vanishes linearly with s and M2

π).
It seems possible to adjust the parameters (and also the
propagator) in order to reproduce exactly the correct T -
matrix chiral expansion at O(p2) and even, we believe, at
O(p4), but this has not yet been done. In this model, the
OM equations must be solved numerically. For this pur-
pose, we have developed an algorithm which is described
in the Appendix.

The λ and µ arrays in (40) are constant parameters
fitted to the data. In the case of 3-coupled channels, the
available data are not sufficiently constraining and sev-
eral different sets of parameters can provide comparable
fits. Two different sets of parameters were obtained in [39]
(called A and B) and two further sets in [40] (called E and
F). Sets A, B and E generate fits with comparable χ2 with
the set of data considered in [39]. Set F has a good χ2 at
low energy only. Close to 1.4 GeV it has a very narrow
resonance, which, perhaps, could be interpreted as a glue-
ball. Although not producing a very good χ2, the authors
of [40] suggest that this scenario is not totally excluded by
the data. The data which was used in these fits consists
in
(a) the set of ππ phase shifts δπ(E) and inelasticities ηπ(E)

as determined in [33] in the energy range 0.6 ≤ Eππ ≤
1.6 GeV and

(b) the set of phases φ12(E) of the ππ → KK̄ amplitudes
from the particular experiment of Cohen et al. [41].

One must keep in mind here that there is some discrep-
ancy in the lower energy part between the result of this
experiment and others, notably by Etkin et al. [42] as
far as the phase is concerned. This point is discussed in
some detail by Au et al. [21], whose K-matrix parametrisa-
tion could more easily reproduce the latter phase results.
Regrettably, the absolute values of the ππ → KK̄ am-
plitudes, which are also available from experiment, were
not included in the fits of [39,40]. The various parameter
sets differ in the behaviour of the phase shift in the third
channel, δ3(E), which is unconstrained by experiment and
also, to some extent, on the detailed structure of the in-
elasticities. These differences, as we will see, will result
in a fairly different behaviour of the spectral functions as
well, so that the sum rule (19) appears as an interesting
theoretical constraint in this kind of analysis.

The T -matrices generated from this model do not sat-
isfy the asymptotic constraints (38) — neither in the two-
channel case nor (for any of the parameter sets discussed
above) in the three-channel case. Thus, they cannot be
used up to infinite energies for our purposes. We must im-
pose the proper asymptotic behaviour, i.e. that the eigen-
phase shifts must sum to 2π in the case of two channels
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Fig. 1. Spectral function computed from T -matrix models
with two coupled channels. The solid line corresponds to the
T -matrix of [21], the dashed line corresponds to [39]

and 3π for three channels, by hand.2 For this purpose, we
have introduced a cutoff energy E0. For E ≤ E0 the T -
matrix is computed from the model, while for E > E0 the
phase shifts are interpolated as follows:

δπ(E) = nπ + (δπ(E0) − nπ)f
(

E

E0

)
,

δi(E) = δi(E0)f
(

E

E0

)
, i ≥ 2, (41)

with n the number of channels and the cutoff function
f(x) = 2/(1 + xm). In practice, we have taken E0 =
1.5 GeV which insures a smooth increase of δπ(E) and
m = 3. Changing these parameters will modify the details
of the shape of the spectral function in the higher energy
region. Inelasticities are computed from the model in the
whole energy range. Other elements of the S-matrix can
then be deduced from unitarity and continuity.

5 Results

5.1 Two-channel models

We first calculate the scalar form factors and the spectral
function from ππ–KK̄ two-channel models. The result for
the spectral function, using the T -matrix model of Au

2 These are the minimal asymptotic values which ensure
existence of a solution. We will assume that a possible fur-
ther increase above the minimal values can only occur for
s1/2 >∼ 2 GeV and will have no influence on lower energy re-
sults.

Table 1. Values of the integrals I0 and I1 (see (42)) from the
two-channel T -matrices labeled as Au [21] and KLL [39]. The
last three columns correspond to different parameter sets of
the three-channel T -matrix model of Kaminski et al. [40]

Au KLL set A set E set F
I0 3.30 3.09 4.18 3.38 2.69
I1 4.92 4.73 6.56 5.74 4.04

et al.3 [21] is shown in Fig. 1, together with the result
from the two-channel version of the potential model of
[39]. Consider first the region s1/2 ≤ 1 GeV: there, the
spectral functions from the two models have the same sign
and are rather similar in shape. For sum rule applications
it is useful to introduce the following spectral function
integrals in this energy region:

In = 16π

∫ 4M2
K

4M2
π

ImΠ6(s)
sn

ds. (42)

Some numerical results for the integrals In, n = 0, 1 are
shown in Table 1. The predictions from the two models are
seen to differ by less than 10% for these quantities.

We have also computed for these two models, the low
energy observables associated with pion form factors. In
the neighbourhood of s = 0 one defines (we follow the
notation of [12])

F1(s) = F1(0)
[
1 +

1
6
〈r2〉π

s s + cπs2 + . . .

]
, (43)

and, similarly, for the matrix element of the s̄s current√
2
3
M̄2

KG1(s) = dF s [1 + b∆s + . . .] . (44)

As shown in [12] the parameter dF is proportional to the
derivative of Fπ with respect to the strange quark mass.
Upon using the T -matrix from Au et al., we have verified
that our calculation reproduces the results obtained pre-
viously [12,43]. The numbers are displayed in Table 2. We
also show the results corresponding to the T -matrix from
[39]. The numbers quoted in the table correspond to an
improved T -matrix where the ππ phase shift is constrained
in the low energy region s1/2 ≤ 0.6 GeV in order to match
the predictions from CHPT at two loops for the scatter-
ing length and the scattering range [44,45] i.e. a0

0 = 0.21,
b0
0 = 0.26M−2

π+ . If we do not make this modification, the
results from the T -matrix of [39] would be only slightly
different. For instance, one would have 〈r2〉π

s = 0.580 fm2,
dF = 0.075 GeV−2, reflecting the reasonable low energy

3 As observed in [12] upon using the values of the parame-
ters at the precision given in the Au et al. paper, a spurious
very narrow resonance appears close to the KK̄ threshold: we
removed this resonance by linearly interpolating the ππ phase
shift on both sides. If not removed, the spectral function would
be identical to that shown in the figure except at the very po-
sition of the resonance where a very narrow dip would appear.
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Table 2. Results for some low energy observables and corre-
sponding chiral coupling constants at O(p4). 〈r2〉π

s is in fm−2

and other quantities in appropriate powers of GeV. The first
two lines correspond to two-channel T -matrices and the last
three lines to three-channel models. The labeling is the same
as in Table 1

〈r2〉π
s cπ dF b∆ 103L4 103L5

Au 0.585 10.50 0.087 3.29 0.41 0.81
KLL 0.605 10.81 0.076 3.45 0.36 1.09
set A 0.609 10.86 0.134 3.12 0.61 0.62
set E 0.583 10.58 0.144 3.15 0.66 0.29
set F 0.653 11.51 0.047 3.80 0.23 1.79

behaviour of the T -matrix in this particular model. These
results are compatible with the known low energy cou-
pling constants from CHPT. At order one loop, the chiral
expansion of 〈r2〉π

s and dF involve the constants L4 and
L5:

〈r2〉π
s =

24
F 2

π

{2L4(µ) + L5(µ)

− 1
64π2

[
log

M2
π

µ2 +
1
4

log
M2

K

µ2 +
4
3

]}

dF =
8M̄2

K

F 2
π

{L4(µ)

− 1
256π2

[
1 + log

M̄2
K

µ2

]}
. (45)

While L4 is not easily determined elsewhere, L5 can be
extracted from the ratio of FK/Fπ and this gives [9]

L5(Mρ) = 1.4 ± 0.5 × 10−3. (46)

Using (45) and the results from Table 2, one deduces

L4(Mρ) ' 0.4 × 10−3, L5(Mρ) ' 1 × 10−3. (47)

The value of L4 can be considered as a prediction, and the
result for L5 appears to be compatible with FK/Fπ. One
must note, though, that this agreement might be some-
what fortuitous because the error of this determination is
rather large. If we assume, for instance, 10% relative er-
rors on 〈r2〉π

s and on dF , the resulting uncertainty on L5
would be ∆L5(Mρ) = ±0.7 × 10−3.

In the region E > 1 GeV now, the spectral functions
from the two models differ considerably; see Fig. 1. The
one corresponding to the model of [39] exhibits a strong
resonance effect. Its contribution to the integral goes in
the sense of canceling the positive contribution from the
f0(980). This is qualitatively as expected from the WSR
(19) and indicates that it seems possible to satisfy this
constraint in a two-channel model. Quantitatively, how-
ever, if one uses the set of parameters of [39] without al-
teration, one finds that the contribution from the f0(1500)
is somewhat too strong and overcompensates that of the
f0(980). At any rate, in the 1.5 GeV region it is no longer
a good approximation to retain only two channels in the

Fig. 2. Spectral function computed from the three-channel T -
matrix model of [39]. The curve corresponds to the parameter
set A of this reference

unitarity relations. Other two-body channels are open like
ηη, and experiment indicates a significant coupling of the
f0(1500) to the 4π channel as well. We will now investi-
gate how such additional channels can affect the results in
an approximation of a single effective additional channel.

5.2 Three-channel models

We have computed the spectral function based on the
three-channel T -matrix model from [39] using several pa-
rameter sets determined in this reference and in a subse-
quent one [40]. The results are shown in Figs. 2–4. Fig-
ure 2 corresponds to the parameter set A from [39] (we
recall that set B from this reference was discarded be-
cause T12 has an unphysical low energy pole in this case)
and Figs. 3 and 4 correspond to the sets E and F from
[40], respectively. Again, let us consider first the energy
region s1/2 ≤ 1 GeV: there, the spectral functions from
the three-channel models are comparable to those from
the two-channel ones. This can be seen, for instance, for
the integrals I0 and I1 displayed in Table 1. Also one can
see from Table 2 that the result for 〈r2〉π

s are rather sta-
ble. A somewhat less stable quantity is dF , the derivative
of the pion form factor of the s̄s current, which increases
in the three-channel model for parameter sets A and E.
This results in a slight increase of L4 and a significant
decrease of L5 which becomes too small and incompatible
with FK/Fπ. On the contrary, a large value of L5 emerges
if one uses parameter set F. Keeping in mind the uncer-
tainty in the determination of L5 from the scalar form
factors, none of the three-channel parameter sets consid-
ered here is as satisfactory as the two-channel models as
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Fig. 3. Spectral function computed from the three-channel T -
matrix model of [40]. The curve corresponds to the parameter
set E of this reference

Fig. 4. Same as Fig. 3. The curve corresponds to the parameter
set F

far as the very low energy behaviour of the form factors
is concerned.

Let us now consider the energy region E > 1 GeV. One
observes from Figs. 2–4 that a variety of shapes can get
generated from different parameter sets. Set F (see Fig. 4)
has a negatively contributing resonance, but it is much too
strong and does not obey the WSR (19). Set A has a posi-
tively contributing resonance and does not obey the WSR

constraint either. Set E (see Fig. 3) displays a more com-
plicated structure: the f0(1500) has also a positive contri-
bution but there is a wide negative contribution centered
at 1.7 GeV, and the WSR is approximately obeyed.

5.3 Estimate of Π̄6(0)

The main conclusion from the above results is that while
there seems to be reasonable agreement on the shape of
the spectral function in the energy range s1/2 ≤ 1 GeV,
its structure above 1 GeV is subject to considerable un-
certainty. In models with more than two coupled channels
the parameters are not sufficiently constrained from the
experimental ππ and KK̄ data. Another source of uncer-
tainty in those models which, again, can be checked to
affect the spectral function above 1 GeV concerns the val-
ues of the form factors at the origin Fi(0), Gi(0), i ≥ 3
which are not given from chiral symmetry. At least, we
have seen that there exist models which fit the data and
can also accomodate the WSR constraint.

In order to calculate Π̄6(0) from the spectral represen-
tation (21) one needs, in principle, to know the spectral
function both below and above 1 GeV. However, the lower
energy range is expected to generate the largest contribu-
tion. Qualitative information on the high energy sector,
such as the existence of the WSR constraint and the ex-
perimental position of the resonances is sufficient if one is
not asking for a very high precision. Firstly, we expect the
contribution to Π̄6(0) from the range s1/2 > 1 GeV to be
negative, giving the upper bound,

Π̄6(0) <∼
1

16π2 I1. (48)

The most plausible scenario is that of a single resonance
dominated contribution around s1/2 ' 1.5 GeV. In this
scenario, the following estimate of Π̄6(0) is valid:

Π̄6(0) ' 1
16π2

(
I1 − I0

(1.5)2

)
, (49)

in which the WSR has been used. In this case, the cor-
rection from the higher energy range is approximately
30%. The other possibility is that several resonances, the
f0(1500) and the f0(1700), are playing a role in the sum
rules. If the two resonances make negative contributions
one expects that the correction to Π̄6(0) will be smaller
than 30% because the 1/s factor suppresses the f0(1700)
contribution. If the contribution from the f0(1500) is posi-
tive the correction is even smaller (this was realised in one
of the three-channel models considered above). The last
possibility is that of a negative f0(1500) and a positive
f0(1700) in which case the contribution from the higher
energy region will be largest, but simple estimates like (49)
show that a 50% correction is a generous upper limit. This
gives us a lower bound on Π̄6(0),

Π̄6(0) >∼
1

32π2 I1. (50)
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From these considerations and the numbers of Table 1 we
infer that the value of Π̄6(0) must lie in the following
range:

2 <∼ 16π2Π̄6(0) <∼ 6. (51)

Using chiral perturbation theory to one loop, (10), this
result can be recast into an estimate of the coupling con-
stant L6:

0.4 <∼ 103L6(Mη) <∼ 0.8. (52)

We note that the bound (18) obtained in Sect. 3 is satis-
fied. This number can be compared with the estimate of
[9]

L6(Mη) = (0.0 ± 0.3) × 10−3. (53)

The central value there is obtained from the assumption
that the OZI rule applies. Indeed, the OZI rule implies
that R̃32 is identically equal to one, and inserting L6(Mη)
= 0 in (4) one finds R̃32 = 0.96 which is very close to one.

The value of L6 that we obtained from the sum rule
implies the following result for the ratio of quark conden-
sates R̃32:

R̃32 ' 1–0.54 ± 0.27. (54)

In order to obtain this estimate, we have used for L6 the
central value which emerges from the sum rule discussion
above and, for the error, we have used the same value as
that estimated in [9] (see (53)). Within the substantial
error band, the main observation is that the deviation of
the quark condensate ratio from 1 is negative, and it seems
to be rather large.

6 Summary

We started by noting that the sensitivity of the quark
condensate on Nf can be tested by studying its variation
as a function of the strange quark mass. This variation
may be related to the correlation function Π6(q2). Two
different expressions of Π6(0) are put equal, one based on
chiral perturbation theory and one which uses a dispersive
representation. We discussed the spectral function which
enters this dispersive integral. We first argued that ImΠ6
satisfies a Weinberg-type sum rule. This sum rule essen-
tially relates resonance contributions from the two energy
regions, 0 ≤ s ≤ 1 GeV2 and 1 ≤ s <∼ 4 GeV2. In the
first energy region the spectral function can be expressed
with good accuracy in terms of scalar form factors of the
pion and the kaon. In turn, these form factors can be con-
structed from experimental scattering data on ππ and KK̄
following the method of [12]. The determination of the
spectral function in the higher energy range is more un-
certain. We considered the prediction from a model which
treats the 4π channel as an effective two-body channel.
The influence of including this third channel in unitarity
relations was found to have a relatively minor influence on
the results in the lower energy region but has a strong in-
fluence on the region above 1 GeV. The dispersive integral,
fortunately, receives its main contribution from the lower
energy range. Using experimental information on the po-
sition of the resonances, as well as the WSR constraint,
allowed us to obtain an estimate of Π̄6(0).

The conclusion of this analysis is that the properties
of the f0(980) meson translate into a value of the coupling
constant L6 which is significantly different from that ex-
pected from the OZI rule (or, alternatively, from large Nc
considerations). If one uses the central value obtained for
L6, one finds that the condensate ūu decreases by as much
as a factor of 2 as one decreases the mass of the strange
quark mass from its physical value down to zero. A qual-
itatively similar behaviour is expected if one varies Nf

from Nf = 2 to Nf = 3. This surprising result is suggest-
ing that Nf = 3 is not extremely far from a chiral phase
transition point. One must bear in mind, however, that
the relationship that we used between Π6(0) and the con-
densate ratio receives corrections from two-loop CHPT. It
remains to be seen whether these are significant or not.
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Appendix: Numerical method

The general idea for solving a linear integral equation is to
approximate it by an ordinary linear system of equations
by discretising the integral. The main difficulty in the case
of the MO equation is to handle the principal-value inte-
gral with high accuracy. Let us illustrate the method we
have used on the one-channel MO equation: the general-
isation to several channels is straightforward. First, one
can transform the equation into one for the real part of
the form factor, R(s) = Re(F (s)),

R(s) =
1
π

∫
−

∞

4M2
ds′ 1

s′ − s
X(s′)R(s′),

X(s′) = tan δ(s′). (55)

It is useful to split the integration region into several sub-
intervals in order to accommodate fast variations of the
integrand (we have used up to seven intervals in our nu-
merical work). Then, every sub-interval [a, b] is mapped to
[−1, 1] and the quantity X(s′)R(s′) is expanded over a ba-
sis of Legendre polynomials. This allows us to perform the
principal-value integration in (55) using the exact formula
[46], ∫ 1

−1
du

PL(u)
u − z

= 2QL(z). (56)

Here QL(z) is the so-called Legendre function of the sec-
ond kind. It is crucial, in order to ensure the success of
the calculation, that it be computed to very high accu-
racy. An algorithm, based on using the recursion relations
in the forward direction if |z| < 1 and in the backward
direction otherwise, proves adequate. One obtains a dis-
cretised approximation to the integral over [a, b]∫

−
b

a

ds′ 1
s′ − sk

X(s′)R(s′) ≈
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N∑
i=1

Ŵi

[
1 +

2(sk − b)
b − a

]
X(si)R(si), (57)

where

si =
1
2
(a + b + (b − a)ui),

Ŵi[z] = −wi

N−1∑
j=0

(2j + 1)Pj(ui)Qj (z) , (58)

and u1, . . . , uN are the set of N Gauss–Legendre integra-
tion points (i.e. the zeros) of PN (u) and w1, . . . , wN are
the associated set of weights. In the case where b = ∞
(last sub-interval), we use

si =
2a

1 − ui
(59)

and ∫
−

∞

a

ds′ 1
s′ − sk

X(s′)R(s′) ≈

2a

sk

N∑
i=1

Ŵi

[
1 − 2A

sk

]
X(si)R(si)

1 − ui
. (60)

In this manner, the functional equation for the function
R(s) gets transformed into a set of M linear equations for
R(s1), . . . R(sM ) where M = nN , n being the number of
sub-intervals. We note that this is a homogeneous system
which, strictly speaking, has no non-trivial solution unless
the determinant vanishes. In practice, it does not exactly
vanish. It is only in the limit of N → ∞, in fact, that the
determinant vanishes. In addition, one wants to specify
the value at zero R(0) and this generates one additional
equation, which is non-homogeneous. A solution can be
defined by dropping one of the homogeneous equations. A
numerically stable way of performing this, is to use the
singular-value decomposition of the (M + 1) × M matrix
of the linear equation system [47].

We have performed several checks of the numerical cal-
culations:

(a) we have verified that upon using the T -matrix of the
Truong–Willey-type [38] the analytical result was ac-
curately reproduced;

(b) we have verified the stability of the result when varying
the number of integration points up to several hundred
points, and

(c) we have also verified that the determinant of the n-
independent solutions obtained numerically accurately
reproduces the result which is known analytically (see
Sect. 4.3).
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